🎮 Soal Dan Pembahasan Turunan Fungsi Trigonometri
Untukmenjawab soal-soal turunan fungsi trigonometri yang sederhana kita masih bisa menggunakan rumus dasar. Akan tetapi, untuk soal yang lebih rumit kita harus menggunakan aturan rantai. Aturan rantai pada turunan fungsi trigonometri prinsipnya sama dengan aturan rantai pada turunan fungsi aljabar. Agar kita dapat menggunakan aturan rantai tentu
Turunan fungsi trigonometri merupakan salah satu materi matematika yang dipelajari pada jenjang SMA, tepatnya di kelas XI. Berikut ini kami sajikan soal-soal yang berkaitan dengan materi turunan fungsi trigonometri, yang disertai dengan pembahasan. Soal dan PembahasanNomor 1Tentukan , jika diketahui .PembahasanMisalkan $fx = \sin x$, sehingga $$f\textcolor{maroon}{x+h} = \sin \textcolor{maroon}{x+h}$$ Berdasarkan definisi turunan fungsi, diperoleh $$\begin{aligned} D_xy &= f'x \\ &= \lim_{h \to 0} \frac{\textcolor{green}{fx+h}-\textcolor{blue}{fx}}{h} \\ &= \lim_{h \to 0} \frac{\textcolor{green}{\sin x+h}-\textcolor{blue}{\sin x}}{h} \\ &= \lim_{h \to 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\ &= \lim_{h \to 0} \frac{\sin x \cos h-\sin x+\cos x \sin h}{h} \\ &= \lim_{h \to 0} \frac{\sin x \cos h-1+\cos x \sin h}{h} \\ &= \lim_{h \to 0} \frac{\sin x \cos h-1}{h}+\lim_{h \to 0} \frac{\cos x \sin h}{h} \\ &= \sin x \cdot \textcolor{red}{\lim_{h \to 0} \frac{\cos h-1}{h}}+\cos x \cdot \textcolor{red}{\lim_{h \to 0} \frac{\sin h}{h}} \end{aligned}$$ Karena $$\lim_{h \to 0} \frac{\cos h-1}{h}=0 \quad \text{dan} \quad \lim_{h \to 0} \frac{\sin h}{h}$$ maka $$\begin{aligned} f'x &= \sin x \cdot \textcolor{red}{0}+\cos x \cdot \textcolor{red}{1} \\ &= 0+\cos x \\ &= \cos x \end{aligned}$$Nomor 2Tentukan , jika diketahui .PembahasanMisalkan $fx = \cos x$, sehingga $$f\textcolor{maroon}{x+h} = \cos \textcolor{maroon}{x+h}$$ Berdasarkan definisi turunan fungsi, diperoleh $$\begin{aligned} f'x &= \lim_{h \to 0} \frac{\textcolor{green}{fx+h}-\textcolor{blue}{fx}}{h} \\ &= \lim_{h \to 0} \frac{\textcolor{green}{\cos x+h}-\textcolor{blue}{\cos x}}{h} \\ &= \lim_{h \to 0} \frac{\cos x \cos h-\sin x \sin h-\cos x}{h} \\ &= \lim_{h \to 0} \frac{\cos x \cos h-\cos x-\sin x \sin h}{h} \\ &= \lim_{h \to 0} \frac{\cos x \cos h-1-\sin x \sin h}{h} \\ &= \lim_{h \to 0} \frac{\cos x \cos h-1}{h}-\lim_{h \to 0} \frac{\sin x \sin h}{h} \\ &= \cos x \cdot \textcolor{red}{\lim_{h \to 0} \frac{\cos h-1}{h}}-\sin x \cdot \textcolor{red}{\lim_{h \to 0} \frac{\sin h}{h}} \end{aligned}$$ Karena $$\lim_{h \to 0} \frac{\cos h-1}{h}=0 \quad \text{dan} \quad \lim_{h \to 0} \frac{\sin h}{h}$$ maka $$\begin{aligned} f'x &= \cos x \cdot \textcolor{red}{0}-\sin x \cdot \textcolor{red}{1} \\ &= 0-\sin x \\ &= -\sin x \end{aligned}$$Nomor 3Tentukan hasil dari .PembahasanPertama, nyatakan $\tan x$ sebagai hasil bagi antara $\sin x$ dan $\cos x$. $$D_x \tan x = D_x \left \frac{\sin x}{\cos x} \right$$ Berdasarkan aturan pembagian pada turunan, diperoleh $$\begin{aligned} D_x \tan x &= D_x \left \frac{\textcolor{blue}{\sin x}}{\textcolor{green}{\cos x}} \right \\ &= \frac{D_x \textcolor{blue}{\sin x} \cdot \textcolor{green}{\cos x} - \textcolor{blue}{\sin x} \cdot D_x \textcolor{green}{\cos x}}{\textcolor{green}{\cos x}^2} \\ &= \frac{\cos x \cdot \cos x - \sin x -\sin x}{\cos^2 x} \\ &= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \\ &= \frac{1}{\cos^2 x} \\ &= \sec^2 x \end{aligned}$$Nomor 4Tentukan hasil dari .PembahasanPertama, nyatakan $\csc x$ sebagai kebalikan dari $\sin x$. $$D_x \csc x = D_x \left \frac{1}{\sin x} \right$$ Berdasarkan aturan pembagian pada turunan, diperoleh $$\begin{aligned} D_x \csc x &= D_x \left \frac{\textcolor{blue}{1}}{\textcolor{green}{\sin x}} \right \\ &= \frac{D_x \textcolor{blue}{1} \cdot \textcolor{green}{\sin x} - \textcolor{blue}{1} \cdot D_x \textcolor{green}{\sin x}}{\textcolor{green}{\sin x}^2} \\ &= \frac{0 \cdot \sin x - 1 \cdot \cos x}{\sin^2 x} \\ &= \frac{0-\cos x}{\sin^2 x} \\ &= \frac{-\cos x}{\sin x \cdot \sin x} \\ &= - \frac{1}{\sin x} \cdot \frac{\cos x}{\sin x} \\ &= - \csc x \cdot \cot x \end{aligned}$$Nomor 5Tentukan hasil dari .PembahasanPertama, nyatakan $\sec x$ sebagai kebalikan dari $\cos x$. $$D_x \sec x = D_x \left \frac{1}{\cos x} \right$$ Berdasarkan aturan pembagian pada turunan, diperoleh $$\begin{aligned} D_x \sec x &= D_x \left \frac{\textcolor{blue}{1}}{\textcolor{green}{\cos x}} \right \\ &= \frac{D_x \textcolor{blue}{1} \cdot \textcolor{green}{\cos x} - \textcolor{blue}{1} \cdot D_x \textcolor{green}{\cos x}}{\textcolor{green}{\cos x}^2} \\ &= \frac{0 \cdot \cos x - 1 \cdot - \sin x}{\cos^2 x} \\ &= \frac{0+\sin x}{\cos^2 x} \\ &= \frac{\sin x}{\cos x \cdot \cos x} \\ &= \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} \\ &= \sec x \cdot \tan x \end{aligned}$$Nomor 6Tentukan hasil dari .PembahasanPertama, nyatakan $\cot x$ sebagai hasil bagi antara $\cos x$ dan $\sin x$. $$D_x \cot x = D_x \left \frac{\cos x}{\sin x} \right$$ Berdasarkan aturan pembagian pada turunan, diperoleh $$\begin{aligned} D_x \cot x &= D_x \left \frac{\textcolor{blue}{\cos x}}{\textcolor{green}{\sin x}} \right \\ &= \frac{D_x \textcolor{blue}{\cos x} \cdot \textcolor{green}{\sin x} - \textcolor{blue}{\cos x} \cdot D_x \textcolor{green}{\sin x}}{\textcolor{green}{\sin x}^2} \\ &= \frac{-\sin x \cdot \sin x - \cos x \cdot \cos x}{\sin^2 x} \\ &= \frac{-\sin^2 x-\cos^2 x}{\sin^2 x} \\ &= \frac{-\sin^2 x+\cos^2 x}{\sin^2 x} \\ &= \frac{-1}{\sin^2 x} \\ &= -\csc^2 x \end{aligned}$$Nomor 7Tentukan , jika diketahui .PembahasanBerdasarkan aturan penjumlahan pada turunan, diperoleh $$\begin{aligned} D_xy &= D_x\textcolor{red}{2\sin x}+\textcolor{blue}{3\cos x} \\ &= D_x\textcolor{red}{2 \sin x}+D_x\textcolor{blue}{3\cos x} \\ &= 2\cdot D_x \sin x+3 \cdot D_x \cos x \\ &= 2 \cdot \cos x + 3 \cdot -\sin x \\ &= 2\cos x-3\sin x \end{aligned}$$Nomor 8Tentukan , jika diketahui .PembahasanMisalkan $u = \sin x$, sehingga $y=u^2$. Turunan dari kedua fungsi ini adalah $$\begin{aligned} &u = \sin x &&\Longrightarrow \quad \frac{du}{dx} = \cos x \\ &y = u^2 &&\Longrightarrow \quad \frac{dy}{du} = 2u \end{aligned}$$ Berdasarkan Aturan Rantai diperoleh $$\begin{aligned} D_xy &= \frac{dy}{dx} \\ &= \frac{dy}{du} \cdot \frac{du}{dx} \\ &= 2 \textcolor{blue}{u} \cdot \cos x \\ &= 2 \textcolor{blue}{\sin x} \cos x \end{aligned}$$Nomor 9Tentukan , jika diketahui .PembahasanBerdasarkan aturan penjumlahan, diperoleh $$\begin{aligned} D_xy &= D_x\cos^2 x + \sin^2 x \\ &= \textcolor{red}{D_x\cos^2 x} + \textcolor{blue}{D_x \sin^2 x} \end{aligned}$$ Hasil dari $\textcolor{red}{D_x\cos^2 x}$ dan $\textcolor{blue}{D_x \sin^2 x}$ dapat dihitung menggunakan Aturan Rantai. $$\begin{aligned} D_xy &= \textcolor{red}{2 \cos x -\sin x} + \textcolor{blue}{2\sin x \cos x} \\ &= -2\sin x\cos x + 2 \sin x \cos x \\ &= 0 \end{aligned}$$ Cara yang lebih mudah adalah memanfaatkan identitas trigonometri $\cos^2x+\sin^2x=1$. $$\begin{aligned} D_xy &= D_x \textcolor{teal}{\cos^2 x + \sin^2 x} \\ &= D_x \textcolor{teal}{1} \\ &= 0 \end{aligned}$$Nomor 10Tentukan , jika diketahui .PembahasanBerdasarkan aturan pengurangan, diperoleh $$\begin{aligned} D_xy &= D_x1-\sin^2 x \\ &= \textcolor{red}{D_x1}-\textcolor{blue}{D_x \sin^2 x} \\ &= \textcolor{red}{0}-\textcolor{blue}{2\sin x\cos x} \\ &= -2\sin x\cos x \end{aligned}$$Nomor 11Tentukan , jika diketahui .PembahasanBerdasarkan aturan pembagian, diperoleh $$\begin{aligned} D_xy &= D_x \left \frac{\textcolor{blue}{\sin x+\cos x}}{\textcolor{green}{\cos x}} \right \\ &= \frac{D_x \textcolor{blue}{\sin x+\cos x} \cdot \textcolor{green}{\cos x} - \textcolor{blue}{\sin x+\cos x} \cdot D_x \textcolor{green}{\cos x}}{\textcolor{green}{\cos x}^2} \\ &= \frac{\cos x-\sin x \cdot \cos x-\sin x+\cos x-\sin x}{\cos^2 x} \\ &= \frac{\cos^2 x-\textcolor{red}{\sin x\cos x} + \sin^2 x + \textcolor{red}{\sin x\cos x}}{\cos^2x} \\ &= \frac{\cos^2x+\sin^2x}{\cos^2x} \\ &= \frac{1}{\cos^2 x} \\ &= \sec^2x \end{aligned}$$Nomor 12Tentukan , jika diketahui .PembahasanBerdasarkan aturan perkalian, diperoleh $$\begin{aligned} D_xy &= D_x \textcolor{red}{\sin x}\textcolor{blue}{\cos x} \\ &= D_x \textcolor{red}{\sin x} \cdot \textcolor{blue}{\cos x} + \textcolor{red}{\sin x} \cdot D_x \textcolor{blue}{\cos x} \\ &= \cos x \cdot \cos x + \sin x \cdot -\sin x \\ &= \cos^2 x-\sin^2 x \end{aligned}$$Nomor 13Tentukan , jika diketahui .PembahasanBerdasarkan aturan perkalian, diperoleh $$\begin{aligned} D_xy &= D_x \textcolor{red}{\sin x} \textcolor{blue}{\tan x} \\ &= D_x \textcolor{red}{\sin x} \cdot \textcolor{blue}{\tan x} + \textcolor{red}{\sin x} \cdot D_x \textcolor{blue}{\tan x} \\ &= \cos x \cdot \tan x + \sin x \cdot \sec^2 x \\ &= \cos x \cdot \frac{\sin x}{\cos x} + \sin x \cdot \frac{1}{\cos^2 x} \\ &= \sin x+\frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} \\ &= \sin x + \tan x \sec x \end{aligned}$$Nomor 14Tentukan , jika diketahui .PembahasanBerdasarkan aturan pembagian, diperoleh $$\begin{aligned} D_xy &= D_x \left \frac{\textcolor{red}{\sin x}}{\textcolor{blue}{x}} \right \\ &= \frac{D_x \textcolor{red}{\sin x} \cdot \textcolor{blue}{x}-\textcolor{red}{\sin x} \cdot D_x \textcolor{blue}{x}}{\textcolor{blue}{x}^2} \\ &= \frac{\cos x \cdot x-\sin x \cdot 1}{x^2} \\ &= \frac{x\cos x-\sin x}{x^2} \end{aligned}$$Nomor 15Tentukan , jika diketahui .PembahasanBerdasarkan aturan perkalian, diperoleh $$\begin{aligned} D_xy &= D_x \textcolor{red}{x^2} \textcolor{blue}{\cos x} \\ &= D_x \textcolor{red}{x^2} \cdot \textcolor{blue}{\cos x} + \textcolor{red}{x^2} \cdot D_x \textcolor{blue}{\cos x} \\ &= 2x \cdot \cos x + x^2 \cdot -\sin x \\ &= 2x\cos x-x^2\sin x \end{aligned}$$Nomor 16Tentukan , jika diketahui .PembahasanBerdasarkan aturan rantai, diperoleh $$\begin{aligned} D_xy &= D_x \tan^2 x \\ &= 2\tan x \cdot \textcolor{blue}{D_x \tan x} \\ &= 2\tan x \cdot \textcolor{blue}{\sec^2 x} \end{aligned}$$Nomor 17Tentukan , jika diketahui .PembahasanBerdasarkan aturan rantai, diperoleh $$\begin{aligned} D_xy &= D_x \sec^3 x \\ &= 3\sec^2 x \cdot \textcolor{blue}{D_x \sec x} \\ &= 3\sec^2 x \cdot \textcolor{blue}{\sec x \tan x} \\ &= 3\sec^3 x \tan x \end{aligned}$$Nomor 18Gunakan identitas trigonometri dan aturan perkalian, untuk menentukan .PembahasanBerdasarkan identitas trigonometri $\sin 2x = 2\sin x\cos x$ dan aturan perkalian, diperoleh $$\begin{aligned} D_x \sin 2x &= D_x 2\sin x\cos x \\ &= 2 \cdot D_x \textcolor{red}{\sin x}\textcolor{blue}{\cos x} \\ &= 2 \cdot [D_x\textcolor{red}{\sin x} \cdot \textcolor{blue}{\cos x} + \textcolor{red}{\sin x} \cdot D_x \textcolor{blue}{\cos x}] \\ &= 2 \cdot [\cos x \cdot \cos x + \sin x \cdot -\sin x] \\ &= 2 \cdot [\cos^2 x-\sin^2 x] \\ &= 2 \cos 2x \end{aligned}$$
SoalDan Jawaban Persamaan Trigonometri Ilmu Soal images that posted in this website was uploaded by Authtool2.britishcouncil.org. Soal Dan Jawaban Persamaan Trigonometri Ilmu Soal equipped with a HD resolution 1016 x 505.You can save Soal Dan Jawaban Persamaan Trigonometri Ilmu Soal for free to your devices.. If you want to Save Soal Dan Jawaban Persamaan Trigonometri Ilmu Soal with original
Soal dan Pembahasan Turunan Fungsi Trigonometri. Rumus-rumus yang akan digunakan dalam penyelesaian turunan fungsi trigonometri adalah sebagai berikut 1. Jika fx = sin x maka f'x = cos x 2. Jika fx = cos x maka f'x = -sin x 3. Jika fx = tan x maka f'x = sec²x Tips Setiap fungsi trigonometri yang hurufnya dimulai dengan huruf c, maka turunannya bernilai negatif Soal dan Pembahasan Turunan Fungsi Trigonometri Soal 1 Turunan pertama fungsi y = cos 2x³ - x² ialah..... A. y' = sin 2x³ - x² B. y' = -sin 2x³ - x² C. y' = 6x² - 2x cos 2x³ - x² D. y' = 6x² - 2x sin 2x³ - x² E. y' = -6x² - 2x sin 2x³ - x² Pembahasan y = cos 2x³ - x² Misalkan ux = 2x³ - x² maka u'x = 6x² - 2x y = cos ux y' = -sin ux . u'x y' = -sin 2x³ - x² . 6x² - 2x y' = -6x² - 2x.sin2x³ - x² JAWABAN E Soal 2 Jika y = x² sin 3x, maka dy/dx = ..... A. 2x sin 3x + 2x² cos x B. 2x sin 3x + 3x² cos 3x C. 2x sin x + 3x² cos x D. 3x cos 3x + 2x² sin x E. 2x² cos x + 3x sin 3x Pembahasan y = x² sin 3x Misalkan ux = x² maka u'x = 2x vx = sin 3x maka v'x = 3 cos 3x y = ux . vx y' = u'x.vx + ux.v'x = 2x . sin 3x + x². 3 cos 3x = 2x sin 3x + 3x²cos 3x JAWABAN B Soal 3 Diketahui fungsi Fx = sin²2x + 3 dan turunan pertama dari F adalah F'. Maka F'x =..... A. 4 sin 2x + 3 cos 2x + 3 B. -2 sin 2x + 3 cos 2x + 3 C. 2 sin 2x + 3 cos 2x + 3 D. -4 sin 2x + 3 cos 2x + 3 E. sin 2x + 3 cos 2x + 3 Pembahasan Fx = sin²2x + 3 Misalkan ux = sin 2x + 3, maka u'x = cos 2x + 3 . 2 = 2cos 2x + 3 2 berasal dari turunan 2x + 3 Fx = [ux]² F'x = 2[ux]¹ . u'x = 2sin 2x + 3 . 2cos 2x + 3 = 4sin 2x + 3 cos 2x + 3 JAWABAN A Soal 4 Diketahui fx = sin³ 3 - 2x. Turunan pertama fungsi f adalah f' maka f'x = ..... A. 6 sin² 3 - 2x cos 3 - 2x B. 3 sin² 3 - 2x cos 3 - 2x C. -2 sin² 3 - 2x cos 3 - 2x D. -6 sin 3 - 2x cos 6 - 4x E. -3 sin 3 - 2x sin 6 - 4x Pembahasan fx = sin³ 3 - 2x Misalkan ux = sin 3 - 2x, maka u'x = cos 3 - 2x . -2 u'x = -2cos 3 - 2x -2 berasal dari turunan 3-2x fx = [ux]³ f'x = 3[ux]² . u'x f'x = 3sin²3 - 2x . -2cos 3 - 2x = -6 sin²3 - 2x . cos 3 - 2x = -3 . 2 sin 3 -2x.sin 3 -2x.cos 3 - 2x = -3 . sin 3 - 2x. 2 sin 3 - 2x.cos 3 - 2x ingat sin 2x = 2 sin x = -3 sin 3 - 2x sin 23 - 2x = -3 sin 3 - 2x sin 6 - 4x JAWABAN E Soal 5 Turunan pertama dari Fx = sin³ 5 - 4x adalah F'x = ..... A. 12 sin² 5 - 4x cos 5 - 4x B. 6 sin 5 - 4x sin 10 - 8x C. -3 sin² 5 - 4x cos 5 - 4x D. -6 sin 5 - 4x sin 10 - 8x E. -12 sin² 5 - 4x cos 10 - 8x Pembahasan Fx = sin³ 5 - 4x Misalkan ux = sin 5 - 4x, maka u'x = cos 5 - 4x . -4 u'x = -4cos 5 - 4x -4 berasal dari turunan 5 - 4x fx = [ux]³ f'x = 3[ux]² . u'x f'x = 3sin²5 - 4x . -4cos 5 - 4x = -12 sin²5 - 4x . cos 5 - 4x = -6 . 2 sin 5 - 4x.sin 5 - 4x.cos 5 - 4x = -6 . sin 5 - 4x. 2 sin 5 - 4x.cos 5 - 4x ingat sin 2x = 2 sin x = -6 sin 5 - 4x sin 25 - 4x = -6 sin 5 - 4x sin 10 - 8x JAWABAN D Soal 6 Jika fx = $\frac{sin x + cos x}{sin x}$, sin x ≠0 dan f' adalah turunan f, maka f'$\frac{π}{2}$ = ..... A. -2 B. -1 C. 0 D. 1 E. 2 Pembahasan fx = $\frac{sin x + cos x}{sin x}$ Misalkan * ux = sin x + cos x , maka u'x = cos x - sin x * vx = sin x, maka v'x = cos x fx = $\frac{ux}{vx}$ f'x = $\frac{u'x.vx-ux.v'x}{[vx]^{2}}$ = $\frac{cos x - sin x.sin x-sin x + cos x.cos x}{[sin x]^{2}}$ f'$\frac{π}{2}$ = $\frac{cos \frac{π}{2} - sin \frac{π}{2}.sin \frac{π}{2}-sin \frac{π}{2} + cos \frac{π}{2}.cos \frac{π}{2}}{[sin \frac{π}{2}]^{2}}$ f'$\frac{π}{2}$ = $\frac{0 - 1.1-1 + 0.0}{1^{2}}$ f'$\frac{π}{2}$ = $\frac{-1 - 0}{1}$ f'$\frac{π}{2}$ = -1 JAWABAN B Soal 7 Turunan fungsi y = tan x adalah..... A. cotan x B. cos² x C. sec² x + 1 D. cotan² x + 1 E. tan²x + 1 Pembahasan y = tan x y = $\frac{sin x}{cos x}$ Misalkan ux = sin x, maka u'x = cos x vx = cos x, maka v'x = -sin x y = $\frac{ux}{vx}$ y = $\frac{u'x.vx-ux.v'x}{[vx]^{2}}$ = $\frac{cos x-sin x . -sin x}{[cos x]^{2}}$ = $\frac{cos^{2}x+ sin^{2}x}{cos^{2}x}$ = $\frac{sin^{2}x+ cos^{2}x}{cos^{2}x}$ = $\frac{sin^{2}x}{cos^{2}x}$ + $\frac{cos^{2}x}{cos^{2}x}$ = $\frac{sin x}{cos x}^{2}$ + 1 = tan x² + 1 = tan²x + 1 JAWABAN E Soal 8 Jika fx = a tan x + bx dan f'$\frac{π}{4}$ = 3, f'$\frac{π}{3}$ = 9, maka a + b = ..... A. 0 B. 1 C. $\frac{π}{2}$ D. 2 E. π Pembahasan fx = a tan x + bx f'x = a . $\frac{1}{cos^{2}x}$ + b f'$\frac{π}{4}$ = a . $\frac{1}{cos^{2}\frac{π}{4}}$ + b 3 = a . $\frac{1}{√2/2^{2}}$ + b 3 = 2a + b ............1 f'$\frac{π}{3}$ = a . $\frac{1}{cos^{2}\frac{π}{3}}$ + b 9 = a . $\frac{1}{½^{2}}$ + b 9 = 4a + b..............2 Eliminasi persamaan 1 dan 2 diperoleh 2a + b = 34a + b = 9 - -2a = -6 a = -6/-2 a = 3 Subtitusi nilai a = 3 ke persamaan 1, diperoleh 23 + b = 3 6 + b = 3 b = 3 - 6 b = -3 Jadi, a + b = 3 + -3 = 0 JAWABAN A Soal 9 Jika r = $\sqrt{sin θ}$, maka dr/dθ = ..... A. $\frac{1}{2\sqrt{sin θ}}$ B. $\frac{cos θ}{2sin θ}$ C. $\frac{cos θ}{2\sqrt{sin θ}}$ D. $\frac{-sin θ}{2cos θ}$ E. $\frac{2cos θ}{\sqrt{sin θ}}$ Pembahasan Misalkan u = sin θ, maka u' = cos θ r = $\sqrt{sin θ}$ r = $\sqrt{u}$ r = $u^{½}$ r' = $\frac{1}{2√u}$ . u' r' = $\frac{1}{2\sqrt{sin θ}}$ . cos θ r' = $\frac{cos θ}{2\sqrt{sin θ}}$ JAWABAN CSoal 10 Jika fx = -cos² x - sin²x, maka f'x adalah..... A. 2sin x - cos x B. 2cos x - sin x C. sin x. cos x D. 2sin x cos x E. 4sin x cos x Pembahasan fx = -cos² x - sin²x fx = -1 - sin²x - sin²x fx = -1 - 2sin²x fx = 2sin²x - 1 Misalkan ux = sin x, maka u'x = cos x fx = 2[ux]² - 1 f'x = 4 . ux¹. u'x - 0 f'x = 4 sin x cos x JAWABAN E Demikian postingan "Soal dan Pembahasan Turunan Fungsi Trigonometri" kali ini mudah-mudahan dengan beberapa soal dan pembahasan di atas dapat memudahkan anda menyelesaikan soal-soal yang berkaitan dengan turunan fungsi trigonometri.
Soaldan pembahasan turunan fungsi trigonometri. 21 kunci jawaban tema 2 kelas 6 uts gif. Meminimumkan biaya rata rata dalam produksi suatu barang biaya totalnya adalah tc 0 4q2 500q 16000 rupiah. Sebuah papan digunakan untuk mencapai pagar setinggi 8 kaki untuk menopang dinding yang berada 1 meter di belakang pagar. Soal dan pembahasan
Postingan ini membahas contoh soal turunan fungsi trigonometri dan pembahasannya. Untuk menyelesaikan soal turunan trigonometri kita menggunakan rumus-rumus turunan seperti turunan perkalian, pembagian dan turunan fungsi komposisi. Secara umum, rumus turunan fungsi trigonometri sebagai berikutJika y = sin x maka turunannya y’ = cos xJika y = cos x maka turunannya y’ = – sin xJika y = tan x maka turunannya y’ = sec2 xJika y = cot x maka turunannya y’ = cosec2 xJika y = sin U maka turunannya y’ = U’ cos UJika y = sinn U maka turunannya y’ = n sinn – 1 U cos U’Jika y = sec x maka turunannya y’ = sec x tan xJika y = cosec x maka turunannya y’ = cosec x cot xUntuk lebih jelasnya dibawah ini diberikan beberapa contoh soal turunan fungsi trigonometri dan soal 1Carilah turunan pertama darisin 3xcos 4xPembahasanJawaban soal 1Misal U = 3xU’ = 3y’ = U’ cos U = 3 cos 3xJawaban soal 2Misal U = 4xU’ = 4y’ = – U’ sin U = – 4 sin 4xContoh soal 2Carilah turunan pertama darisin 2x + 3cos 3x – 2PembahasanJawaban soal 1Misal U = 2x + 3U’ = 2y’ = U’ cos U = 2 cos 2x + 3Jawban soal 2Misal U = 3x – 2U’ = 3y’ = – U’ sin U = – 3 sin 3x – 2Contoh soal 3Carilah f'x dari fungsi-fungsi dibawah = sin2 xfx = cos2 xPembahasanJawaban soal 1 menggunakan rumus turunan fungsi komposisiMisal U = sin xU’ = cos xfU = U2f'U = 2Uf'x = f'U . U’ = 2U . cos x = 2 sin x cos xJawaban soal 2Misal U = cos xU’ = – sin xfU = U2f'U = 2Uf'x = f'U . U’ = 2U . – sin x = -2 cos x sin xContoh soal 4Carilah f'x dari fungsi-fungsi dibawah = 2 cot xfx = 6 sin x + 2 cos xPembahasanJawaban soal 1 menggunakan rumus turunan fungsi perkalianMisal U = 2 maka U’ = 0V = cot x maka V’ = cosec2 xf'x = U’ V + U V’f'x = 0 . cot x + 2 cosec2 x = 2 cosec2 xJawaban soal 2f'x = 6 cos x + 2 . – sin xf'x = 6 cos x – 2 sin xContoh soal 5Carilah turunan dariContoh soal 5 turunan fungsi trigonometriPembahasanJawaban soal aMisal U = 1x = x-1U’ = -1 x-1 – 1 = – x-2fU = sin Uf'U = cos Uy’ = f'U . U’ = cos U . – x-2 = – x-2 cos 1xJawaban soal bMisal U = x2U’ = 2xfU = cos Uf'U = – sin Uy’ = f'U . U’ = – sin U . 2x = – 2x sin x2Contoh soal 6Carilah turunan dariContoh soal 6 turunan fungsi trigonometriPembahasanJawaban soal a Misal U = 5 maka U’ = nol V = sin x maka V’ = cos x y’ = U’ V – U V’V2 y’ = – 5 cos xsin2 x = – 5 cos xsin2 x Jawaban soal b Misal U = 2 maka U’ = nol V = cos x maka V’ = – sin x y’ = U’ V – U V’V2 y’ = x – 2 - sin xcos2 x = 2 sin xcos2 x Contoh soal 7Carilah turunan dari y = cos2 3x – 2.PembahasanMisalkan U = 3x – 2 maka U’ = 3fU = cos2 UMisalkan V = cos U maka V’ = – sin UfV = V2 maka f'V = 2Vy’ = f'V . V’ . U’y’ = 2V . – sin U . 3 = 2 cos U . – sin U . 3y’ = -6 sin 3x – 2 cos 3x – 2Contoh soal 8Carilah turunan dari y = sin2 2 – x.PembahasanMisalkan U = 2 – x maka U’ = -1fU = sin2 UMisalkan V = sin U maka V’ = cos UfV = V2 maka f'V = 2Vy’ = f'V . V’ . U’y’ = 2V . cos U . – 1y’ = 2 sin U . cos U . -1 = -2 sin 2 – x cos 2 – xContoh soal 9Carilah turunan dari y = x2 sin U = x2 maka U’ = 2xV = sin 3x maka V’ = 3 cos 3xy’ = U’ V + U V’y’ = 2x . sin 3x + x2 . 3 cos 3xContoh soal 10Carilah turunan dari y = x2 cos U = x2 maka U’ = 2xV = cos 2x maka V’ = – 2 sin 2xy’ = U’ V + U V’y’ = 2x cos 2x + x2 . – 2 sin 2xy’ = 2x cos 2x – 2x2 sin 2xContoh soal 11Contoh soal 11 turunan fungsi trigonometriPembahasanf'x = – 2 cos x + sin xπ/2 = 90°f'90° = – 2 cos 90° + sin 90° = – 2 . 0 + 1 = 1Jadi soal ini jawabannya soal 12Contoh soal 12 turunan fungsi trigonometriPembahasanTurunan fx = sin2x adalah f'x = 2 sin x cos x contoh soal nomor 32 sin x cos x = sin 2xsin 2x = 1/2 maka x = 15° = π/12 karena sin 2 . 15° = sin 30° = 1/ soal ini jawabannya E.
Soalsoal yang akan kita bahas meliputi turunan pertama, turunan kedua dan seterusnya, nilai stasioner, fungsi turun dan fungsi naik, titik belok, nilai maksimum dan minimum, persamaan garis singgung kurva maupun aplikasi fungsi turunan. Pengertian dan Definisi Turunan Fungsi
Setelahmempelajari perbandingan trigonometri dasar sudut istimewa identitas trigonometri aturan sinus aturan cosinus dan persamaan trigonometri selanjutnya kita akan mempelajari aplikasi trigonometri. Dfrac 1 sin t cos t 2 e. Jawaban soal 2 f x 6 cos x 2. Jawaban soal 1 menggunakan rumus turunan fungsi perkalian. Sin 3 t cos 3 t c.
.